

Scientifically verified results

Simulation – Testing – Validation

fka has access to a unique testing and simulation infrastructure for all parts of a vehicle. Our cross-functional networking plus our close proximity to RWTH Aachen University's scientific research guarantee innovative solutions and resilient outcome.

Content Content

Chassis		Drive Train	
Test Track	6	Dynamic Transmission and Axis Test Benches	28
Vehicle testing	7	Test Bench Infrastructure	29
Kinematic and Compliance Test Rig	8	Four-wheel Test Bench	30
Vehicle Inertia Measuring Machine (VIMM)	9	Dynamic Roller Test Bench	31
Cornering & Traction Test Rig MTS Flat-Trac IV CT plus	10	Battery Test and Simulation System I	32
Motorcycle Tyre Test Rig	11	Battery Test and Simulation System II	33
Truck Tyre Test Rig	12		
Stiffness Tyre Test Rig	13	Acoustics / NVH	
Cleat Tyre Test Rig	14	Psycho Acoustics Laboratory	34
Mobile Tyre Test Trailer	15	Acoustic Parameter Test Benches	35
Linear Friction Test Rig	16	Modal Analysis and Transfer Path Analysis	36
Dynamic Vertical Excitation Test Rig	17	CV-joint Test Bench for Functional Tests	37
Servo Hydraulic Test Centre	18	Thermal Management	
Body Structures		Thermal Conductivity Test Bench	38
Servo Hydraulic Test Centre	18	Driver Assistance	
Crash Test Facility	19	Spray Truck	39
Drop Tower Test Bench	20	ADAS-Testing Trucks IVECO Stralis 500 und 480	40
Pedestrian Protection Test Bench	21	ADAS-Testing Car Passat	41
Body Components Benchmarking	22	Tools for Evaluation and Validation of ADAS Sensors and Functions	
Denting Test Benches	23		42
Body Stiffness Test Bench	24	Static Driving Simulator	43
Optical Measuring Methods	25	Highly Dynamic Driving Simulator	44
CAE Tools	26	V2X Communication	45
Electrics / Electronics			
Battery Conditioning and Powernet Testing	27		

Test Track Vehicle testing

Application

- investigation of longitudinal, lateral and vertical dynamics of passenger cars, commercial vehicles and motorcycles
- measurements of accelerated passing according to guideline DIN ISO 362 / UN/ECE R51.03)
- measurements of tyre noise and track noise
- development of control, information and communication systems
- investigation of driver-vehicle-interaction

Technical Data

- length: 400 m
- two circles:
 - diameter: 100 mdiameter: 40 m
- section with acoustics track (DIN ISO 10844/94):
 - width 20 m
 - length 45 m
- watering system
- low friction (µ-low) on plastic foil

Scope of testing activities

- Planing of test series & integration of measurement equipment to test vehicles
- Performance of driving tests (e.g. ISO, ECE or customer specific maneuvers)
- Post processing and evaluation of measurement data

Available measurement equipment

- Steering robot (Anthony Best Dynamics SR60)
- Measurement steering wheel (Corrsys Datron MSW)
- GPS supported Inertial Measuring Unit (IMAR iTrace F200-E)
- Optical velocity sensor (Corrsys Datron Correvit S350)
- Optical 3D-Measuring system (AICON Wheelwatch)
- Acceleration sensors (2 g, 10 g, 50 g)
- Various additional sensors and measurement components (e. g. travel sensors, pressure sensors, pedal force sensors)

Kinematic and Compliance Test Rig

Application

- kinematics and compliance investigations (K & C)
- measurement of complete vehicles or single axle modules

Technical Data

- 3D force application: longitudinal forces (x), lateral forces (y), vertical forces (z)
- 12 hydraulic actuators
- PC-controlled measuring procedure
- three-dimensional force and displacement measurement
- analysis of driving situations with combined load (rolling)

■ max. vertical load: 13 kN

max, horizontal load: 5 kN

■ max. wheelbase: 3210 mm

max. track width: 1640 mm

Vehicle Inertia Measurement Machine (VIMM)

Application

measurement of vehicles, components and trailers

Technical Data

- measurement of all inertia parameters:
 - mass
 - centre of gravity position
 - moments of inertia
- servohydraulically controlled platform supported by spherical bearing
- test object weight: 300 kg 2600 kg

Cornering & Traction Test Rig MTS Flat-Trac IV CT plus

Applications

- steady-state force and moment measurement
- dynamic force and moment measurement
- slip angel sweeps tests
- tractive tests
- sinusoidal slip angle tests
- sinusoidal radial deflection tests
- simulation testing
- effective rolling radius measurement
- support of wet traction testing

Technical Data

- longitudinal force F_.: ± 18 kN
- lateral force F_v: ± 20 kN
- max. wheel load F₂: 25 kN
- wheel torque: ±6000 Nm
- slip angle: ±20° (50°/s max velocity)
- camber angle: ± 10°(8°/sec max velocity)

- roadway velocity:
 - ± 250 km/h
- max. tyre outside diameter:910 mm
- max. loaded tyre diameter:910 mm
- coating: Korund 3M P120
- electric drive system

Motorcycle Tyre Test Rig

Application

- determination of force transmission behaviour
- tyre wear behaviour

Technical Data

- max. wheel load F₂: 12 kN
- tyre slip angle: 12 ° to 12 ° (dyn.: ± 2 ° at 5 Hz)
- camber angle: -45° +20° (dyn.: ±5° at 5 Hz)
- max. speed: 180 km/h
- drum diameter: 1.59 m
- drum coating: Korund 3M P80

Truck Tyre Test Rig

Application

- determination of force transmission behaviour
- rolling resistance measurements
- determination of tyre vibration characteristics
- tyre stiffness measurements

Technical Data

■ max. wheel load F₇: 50 kN

max. brake torque: 16 kNm

tyre slip angle: ± 15 °

camber angle: ± 10 °

max. speed: 120 km/h

■ max. tyre diameter: 1070 cm

drum diameter: 2.5 m

■ drum coating: Korund 3M P120

■ tyre pressure control device

Stiffness Tyre Test Rig

Application

- Fully automated static vertical, lateral, longitudinal and torsional stiffness measurements of non-rolling tyre; static stiffness data on sharp obstacles; contact patch pressure distribution and geometry analysis
- Precise measurement with low displacement rates and therefore high repeatability according to OEM and typre manufacturer requirements

Technical Data

■ longitudinal force F_v: 40 kN

■ lateral force F_v: 40 kN

■ max. wheel load F₇: 40 kN

■ camber angle: ±9.5 °

steering angle: ±80°

■ max. travel XY: ± 130 mm

max. tyre diameter: 1430 mm

max. tyre width: 380 mm

■ tire contact surface: Korund 3M P120

Cleat Tyre Test Rig

Application

 Measurements with highest demands on structural rigidity of the test rig

Technical Data

- longitudinal force F_x: ± 20 kN
- lateral force F_v: ± 20 kN
- max. wheel load F₇: 30 kN
- max. speed: 90 km/h
- max. tyre diameter: 850 mm
- drum diameter: 1.59 m
- drum coating: steel
- retention force of the clamp unit (μ = 0.3): 240 kN

Mobile Tyre Test Trailer

Application

- determination of tyre characteristics on real road surfaces and outer drum
- determination of tyre characteristics in different weather conditions
- rolling resistance measurements

Technical Data

- longitudinal force F_v: ±40 kN
- lateral force F_v: ±40 kN
- max. wheel load F₇: 60 kN
- max. braking torque: 25 kNm
- tyre slip angle: ±45°, 2°/s
- camber angle: ± 10 °
 - camber axis on road surface
- max. speed: 90 km/h
- wheel diameter: 560 mm 1240 mm
- dynamic wheel load control for higher measurement accuracy

Linear Friction Test Rig

Application

- investigation of different friction conditions
- investigation of influence of temperature on rubber friction
- investigation of influence of road roughness on friction coefficient

Technical Data

- specimen size: 60 mm x 60 mm
- pressure: 0.3 bar 3.5 bar
- speed: 0.001 m/s 1.5 m/s
- max. temperature: 80 °C
- 3D force measurement: ± 2000 N
- accuracy: ±0.1%
- device is portable

Dynamic Vertical Excitation Test Rig

Application

- investigation of highly dynamic stiffness and damping characteristics of passenger car and motorsports tyres
- investigation of the influence of wheel load fluctuations on side force generation
- vertical excitation up to 50 Hz, with or without slip angle

Technical Data

- max. wheel load F₇: 20 kN
- static side slip angle: ±6°
- max. speed: 120 km/h
- wheel dimensions: 13" 20"
- drum diameter: 2.5 m
- max. excitation frequency: 50 Hz (depending on wheel mass and amplitude)

Servo Hydraulic Test Centre

Crash Test Facility

Application

- endurance strength investigation of complete vehicles, vehicle structures and components
- investigation of vehicle comfort characteristics
- determination of material parameters
- material property identification
- quasistatical crush testing for analyzing of body-in-white deformation and specimen deformation behavior (e. g. FMVSS 214)

Technical Data

- modular test bench system for individual testing
- 2 sprung foundations: 15 m x 6 m and 4 m x 3 m
- 20 hydraulic cylinders:
 - force: 10 kN 350 kN
 - stroke: 100 mm 1000 mm
 - frequency: f_{max} 150 Hz
- variable climate boxes
- 8 MTS-Flextest control loops (position- and force control, RPC for iteration further signals)

Application

- full vehicle crash tests according to current standards (e. g. FMVSS 208, offset & pole impact)
- component and sled tests (e. g. AZT, IIHS, RCAR, ECE-R42 "Pendulum Tests")
- individual test configurations (e. g. kerb impact)
- measuring data analysis and reporting
- video data analysis (2D tracking of any number of crash marker (relatively and absolutely), measuring data and video data synchronization, storaging in iso-mme format)

Technical Data

- track: 50 m
- max. impact speed: 80 km/h
- max. sled weight: 4000 kg
- 2 crash-resistant onboard measuring systems with 32 channels each (max. 100 kHz/channel)
- 3-axial forces measurements of up to four load pathes and additionall two 6-axial load cells (F_v = 400 kN, M_v = M_v = 8 kNm)
- film pit
- digital high-speed video cameras with max. 5000 fps
- variable crash sleds with adjustable mass, centre of gravity, track width, wheel base and tyre dimensions

Drop Tower Test Bench

Application

- analysis of the energy absorption capability of structures and materials
- cost-efficient substitution of crash repair tests
- reproduction of impact configurations for pedestrian protection

Technical Data

- drop weights: 3.5 kg 800 kg
- max. impact velocity: 42 km/h
- collection of impactor deceleration, impactor travel and reaction forces with 100 kHz
- digital highspeed video cameras with max. 5000 fps
- max. deformation: 500 mm

Pedestrian Protection Test Bench

Application

- testing of pedestrian protection with head impactors according to:
 - 2009/78/EC
 - EURO NCAP
 - GTR No. 9

Technical Data

- max. impact speed: 45 km/h
- impact angle: 0 ° 70 °
- head impactor according to the test procedure (e.g. 3.5 kg or 4.5 kg head impactor with sensors)
- sampling frequency: 100 kHz
- digital high-speed video system with max. 5000 fps

Body Components Benchmarking

Application

determination of global stiffnesses of closures

Load Cases Hoods/Tailgates

- torsional stiffness
- longitudinal stiffness
- lateral stiffness

Load Cases Doors

- window frame stiffness
- door sag
- over opening
- beltline stiffness

Denting Test Benches

Application

- determination of oil canning and dent resistance
- analysis of closures of any vehicle classes
- measurement of the deflection using a laser measuring device
- use of different indenters for oil canning and dent resistance
- execution of hailstorm tests using special steel balls

Body Stiffness Test Bench

Application

- determination of torsion and bending stiffness of body in white with and without hang-on parts
- determination of stiffness courses

Technical Data

- max. vehicle length: 6 m
- application of torsion moments of 1000 Nm, 2000 Nm and 3000 Nm in the strut towers of the body
- measuring of the deflections at about 60 measuring points

Optical Measuring Methods

GOM TRITOP

Application

- measuring of 3D component deformations and motions
- simultaneous analysis of multiple measuring locations at the same time

Technical Data

■ measuring accuracy: 0.2 mm

GOM ATOS

Application

- digitising of any geometries of body, drivetrain, chassis, electronics and interior components
- representation of component geometries as STL point clouds
- polygonised display of component geometry as a basis for CAD and FE modelling
- quality check (direct comparison of identical component geometries and dimensions for the assessment of deviations)

Technical Data

- two measuring areas: 500 mm x 400 mm and 1000 mm x 800 mm
- measuring accuracy: 0.1 mm (according to VDI directive VDI 2634)

Battery Conditioning and Powernet Testing

CAE Tools

Application

- linear and non-linear structural analysis
- crash and fatigue simulation
- modal analysis and noise emission
- simulation of torsional oscillations in drive systems
- simulation of longitudinal and lateral dynamics

- traffic-flow simulation
- aerodynamic analysis
- 2D-tracking for crashtesting
- analyzing and reporting of measurements and measurement, control and monitoring systems

Software Tools

- CATIA, ProEngineer
- HyperWorks, Primer
- ABAQUS/Implicit, ANSYS, NASTRAN, OptiStruct
- ABAQUS/Explicit, LS-DYNA, MADYMO, PAM-CRASH, RADIOSS
- ADAMS-CAR, CarMaker

- Matlab-Simulink, Dymola, Modelica
- PFLOPS
- StarCCM+, AcuSolve
- LMS Virtual.Lab
- Signum Bildtechnik Motion Analysis
- National Instruments LabVIEW und DIAdem

Application

- verification of vehicle powernet topologies (12 V / 48 V), operating strategies and components
- controlled charging/discharging and cyclic conditioning of batteries to desired state of charge (SoC)
- testing of inductive charging systems and analysis of effects on the vehicle powernet

Technical Data

- charging by the use of standard battery chargers or power supplies up to 400 A
- discharging with constant current (600 A), constant resistance and constant power (5.6 kW)
- max. engine load emulation: 18 kW
- verification of 12 V / 48 V topologies
- components featuring diverse communication interfaces can be integrated in test setup
- induktive charging with up to 7.2 kW at 85 kHz
 - automatic position measurements (0.125 mm)

Dynamic Transmission and Axis Test Benches

Testobjects

- drivesystems
- drivetrain components
- supply of DC-power up to 1000 V, 1000 A

Application

- transient road tests similar to the test track
- function study and characteristic behaviour / performance of drive train components
- endurance strength with and without time scaling
- power output and efficiency measurements
- energy and fuel consumption
- structure-borne noise measurements and transfer path

Technical Data

max. driving power: 500 kW

■ braking power: 2 x 560 kW

max. velocity: approx. 340 km/h

max. wheel torque: 4700 Nm

Test Bench Infrastructure

Available components

- micro drive for auxiliary power and towing capacity measurements
- high-precision torque measurement technique (HBM T12)
- analysers for electrical power output measurements 1- and 3-phase (ZES Zimmer)
- flow-rate meter for fuel consumption measurements (Pierburg PLU, Swissline Uniflowmaster)
- damage early detection system, level- and spectrum based (RedAnt MIG16)
- device for application of axle loads to the tested (commercial/ utility) vehicle axis
- gear shift automat (GIF GSE2)
- adaption gear to adapt the test item characteristics to the testing machine (high revolution, high torque, ...)

Four-wheel Test Bench

Testobjects

- complete vehicles
- drivesystems
- drivetrain components
- supply of DC-power up to 1000 V, 1000 A

Application

- transient road tests analog to test track
- benchmarking of operation strategies
- function study and characteristic behavior / performance of drive train components
- endurance strength with and without time scaling
- power output and efficiency measurements
- energy and fuel consumption
- noise analysis

Technical Data

- max. driving power: 330 kW
- braking power: 4 x 120 kW
- max. velocity: approx. 250 km/h
- simulated vehicle mass: 600 kg 3000 kg
- max. wheel torque: 1800 Nm (respectively 6255 Nm)

Dynamic Roller Test Bench

Application

- testing of conventional and alternative drive systems
- analysis of energy consumption
- noise and vibration analysis
- function development and application

Technical Data

- max. speed: 200 km/h
- max. static axle load: 3000 kg
- flywheel classes: 450 kg 2270 kg
- max. tractive-resistance losses: 60 kW
- max. traction force: 1700 N
- terminal box of battery simulation system

Battery Test and Simulation System I

Application

- characterisation of energy storages
- simulation of energy storages
- voltage source/sink to implement high voltage components
- combinable with other test benches

Technical Data

- voltage range: 0 V 650 V
- current range: ±1 A 400 A
- dynamics (0% 95% scheduled value): 0.1 s
- CAN-interface to connect with battery management systems

Battery Test and Simulation System II

Application

- characterisation of energy storages including a cooling system under varying climatic conditions
- development and testing of cooling systems and thermal management systems
- development and testing of battery management systems
- simulation of energy storage systems based on Matlab/Simulink models

Technical Data Battery Tester

- voltage range: 10 V 1000 V
- current range: ± 1000 A
- max. power: ±400 kW
- dynamics (load step 10% – 90%): 1 ms
- interface to Matlab/ Simulink
- rest bus simulation

Climatic Chamber

- inner dimensions (w/d/h): 2 m x 2.50 m x 2.20 m
- temperature range: -40 °C - 70 °C
- humidity range: 10% – 95% rel. humidity
- dew point range: 5 °C – 68.8 °C
- dynamics: 2 K/min
- testing up to hazard level 6 possible

Psycho Acoustics Laboratory

Application

- binaural analysis of interior and exterior noises
- subjective noise evaluation
- sound design

Technical Data

- presentation room providing a video screen
- separated control room
- software: Head Acoustics ArtemiS
- artificial head systems

Acoustic Parameter Test Benches

Reverberation Room / Window Test Bench

- transmission loss and sound radiation characteristics determination of materials or components
- airborne noise excitation with frequency range up to 16 kHz
- structure-borne vibration excitation by electro dynamic shakers with forces up to 2.7 kN and frequency range up to 10 kHz
- measurement equipment: microphones, sound intensity probe, laser vibrometer
- reverberation room
 - max. window size: 2.2 m x 1.9 m
 - volume: 7.4 m³
 - mass: 7.5 t

Impedance Tube including Transmission Loss Kit

- determination of acoustic parameters (e.g. sound absorption, transmission loss etc.)
- measurement according to DIN ISO 10534-2 and ASTM E2611-09
- specimen diameter: 29 mm and 100 mm
- data acquisition system
 - dynamic: 160 dB
 - sampling rate: 51.2 kHz
 - resolution: 24 bit

Modal Analysis and Transfer Path Analysis

Modal Analysis

- experimental and virtual determination of eigenfrequencies, natural modes and modal damping
- vibration excitation via shaker and impulse hammer
- system response measurement with acceleration sensors or laser vibrometer
- simulation with established FEM software, e.g. Abaqus, Nastran, Optistruct

Transfer Path Analysis (TPA)

- full vehicle investigation of the vibration and noise transfer paths
- vibration excitation via shaker, impulse hammer and airborne noise source
- binaural noise measurement with artificial head system
- data acquisition with up to 136 channels
- different software for current TPA methods available, e.g. matrix inversion (principle components analysis as option) or stiffness method

CV-joint Test Bench for Functional Tests

Application

- joint efficiency tests (caloric test method)
- 3rd order axial force measurements
- plunging force measurements
- joint types:
 - ball joints
 - tripo joints
 - cardan joints
 - prototype joints
- joint benchmarking

Technical Data

- speed: 0 min⁻¹ 1000 min⁻¹
- torque: 0 Nm 1000 Nm
- plunging excitation: 0.1 mm 15 mm
- plunging frequency: 0 Hz 50 Hz
- bending angle: 0 ° 20 °
- joint temperatures: 20 °C 140 °C

Thermal Conductivity Test Bench

Application

- heat flux coefficient determination for different materials and material combinations
- contact resistance determination for different surface combinations as function of the contact pressure

Technical Data

- temperature range: -20 °C 200 °C
- pressure range: 0 bar 10 bar
- test sample geometry: 50 mm x 50 mm x (1 50) mm

Spray Truck

Application

- artificial generation of spray cloud
- testing and evaluation of driver assistance systems and environmental sensors

Technical Data

- basic vehicle: Mercedes Benz SK 2448
- 6 water tanks with 1000 l each
- power of the pump: 600 l/min
- water pressure: 6 bar
- 5 separate switchable circles for different spray cloud configurations
- different nozzle configuration for the variation to the spray density

ADAS-Testing Trucks IVECO Stralis 500 und 480

ADAS-Testing Car Passat

Application

- development and evaluation of driver assistance systems
- component tests (sensors, control algorithm etc.)
- analysis of driver behavior

Available functions

- ACC with Stop&Go, Lane
 Keeping Assist (car / trucks)
- Platooning (trucks)
- AEB (car)
- Traffic lam Assist (car)
- fully automated parking (car)
- automated valet parking (car)
- trajectory planning- and following-controller for automated driving (car)

Technical Data Testing Trucks

- interface for full braking & max. acceleration
- EHPS with torque superposition and steering angle and torque interface (up to 12 Nm)
- integrated lidar and radar sensors
- mono camera with integrated lane detection
- V2V and V2X communication
- dSpace Autobox: model based development (Simulink)

Technical Data Testing Car

- acceleration interface (-3.5 m/s² 2.5 m/s²)
- brake booster (full deceleration capability)
- electric accelerator pedal for acceleration
- EPS with steering angle and torque interface
- Shift-By-Wire interface
- 6 radar sensors (4 x short range, 2 x mid/long range)
- 1 laser scanner (front facing)
- 12 ultrasonic sensors
- mono camera with integrated lane- and object detection
- mono camera for algorithm development
- dSpace MicroAutobox/MPC565: model based (Simulink/C)
- Vehicle-PC: EB Assist ADTF & Robot Operating System (ROS)

Optional measurement instrumentation

- 2 Velodyne VLP-16 laser scanner
- RTK-GPS: OXTS RT3003 (with SmaRT-Range for target vehicle)
- Smart Eye eyetracker
- V2X communication: Cohda Mk5 Onboard Unit
 - ITS-G5 and WAVE protocol using 802.11p
 - Standardised (CAM, DENM, SPAT etc.) & free defined message format

40 Hessage format 41

Tools for Evaluation and Validation of ADAS Sensors and Functions

Application

- sensor tests (radar, lidar, image processing)
- ACC evaluation
- AEB evaluation according to Euro NCAP protocol
- evaluation of driver behaviour

Technical Data

- sensor target reflectors
- lane markings
- balloon cars
- dynamic slab car
- Oxts RT3003 RTK-GPS with SmaRT-Range
- scenario catalogue
- test tracks

Static Driving Simulator

Application

- Driver behavior analysis
- HMI usability and acceptance studies
- Support in early decision phases for Development of new assistance systems
- Demonstration of not yet secured or incomplete Systems

Technical Data

- Different, interchangeable mock-ups (full-size & half-size)
- Freely programmable displays (Instrument Cluster & Centerdisplay)
- PC-supported 5.1 noise simulation
- I-Beam structure-borne sound transducer
- 3 channel front projection
- perspective split rear projection
- 220°x40° Field of View
- Use of real rearview mirror & mirror replacement system possible
- Separate test person rooms
- 16 years of experience

Optional measurement technology

- Remote eye tracking system from Smarteye
- Tobii Pro Glasses for eye tracking

Highly Dynamic Driving Simulator

Application

- driver behaviour analysis
- driver assistance systems assessment
- demonstration of future steering and control concepts
- "time machine" for future mobility and vehicle concepts

Technical Data

- unscaled motion simulation of highly dynamic driving manoeuvers
- hexapod on y-table
- acceleration: approx. 10 m/s² (at 1000 kg payload)
- speed: approx. 10 m/s (at 1000 kg payload)
- max. payload: about 2000 kg
- eyetracker: SmartEye Pro 6.0
- dome diameter: 7.0 m
- max. mockup height: 1.90 m
- fits SUVs
- field of view: 360 ° x 45 °

V2X Communication

Application

- evaluation and development of connected ADAS
- evaluation and analysis of V2X hardware

Technical Data

- completely covered test track with DSRC (ITS 5G Standard) and numerous track elements
- traffic signals in public traffic with V2X communication
- highly flexible mobile cooperative traffic signal for test track
- research intersection with permanently installed traffic light system with 6 signal groups and connection to V2X roadside units
- processing of standardized (e.g. CAM, DENM, SPAT) and also proprietary messages
- Cohda wireless communication devices for data exchange according to European (ETSI ITS G5) and American (SAE J2735 WAVE) standard based on 802.11p WiFi
- road side units mounted on flexible tripod with power supply
- reference sensor systems for motion measurements of e.g. pedestrians or cyclists and allocation of the data via V2X communication
- Vector CANoe software with C2X interface

fka Steinbachstr. 7 52074 Aachen Germany

୬ +49 241 8861 0

☑ info@fka.de

www.fka.de www.fka.de/xing www.fka.de/linkedin